Landfill Gas Mitigation System Design for Post-Closure Building Development

Jeffrey F. Ludlow, P.G. Sigrida Reinis, Ph.D., P.E.

Treadwell & Rollo, Inc.
555 Montgomery Street, Suite 1300
San Francisco, CA 94111
(415) 955-9040

CIWMB Landfill Postclosure Land Use Symposium

Ontario, CA February 15 – 16, 2006 Stockton, CA February 28 – March 1, 2006

Regulatory Framework for Post-Closure Development

- © CCR Title 27 California Integrated Waste Management Board Postclosure Land Use regulations (§ 21190).
- Plans and specifications are reviewed and approved by the Enforcement Agency (EA, formerly LEA) and California Regional Water Quality Control Board.
- Local air district (e.g., BAAQMD, SCAQMD, SJVAPCD) may require "Permit to Construct" and "Permit to Operate", depending upon presence and concentrations of specific VOCs; methane may be exempt, depending upon district.

Regulatory Requirements

- All on-site construction on top of landfills or within 1,000 feet of the boundary of any disposal area must meet the following criteria:
- Geomembrane or equivalent... between floor slab... and subgrade;
- Permeable layer of open graded material... with a minimum thickness of 12 inches... between the geomembrane and subgrade ...;
- Geotextile filter... to prevent the introduction of fines into the permeable layer;
- 4) <u>Perforated venting pipes</u> shall be installed within the permeable layer...;

Regulatory Requirements (cont.)

- The venting pipe shall be constructed with the ability to be connected to an <u>induced draft exhaust system</u>;
- Automatic methane gas sensors shall be installed within the permeable gas layer, and inside the building...; and
- Periodic methane gas monitoring shall be conducted inside all buildings and underground utilities...

T&R's experience has been that regulators may be willing to negotiate certain technical details of mitigation systems, provided the design principles are sound and the regulatory intent is met.

Achieving Regulatory Compliance

- 2 Landfill gas collection, venting and monitoring system designed and installed for each building.
- © Collection system consists of horizontal perforated pipes in a grid pattern under the building slab that vent to atmosphere above the roof level.
- 2 Passive vent system connected to wind turbine at roof.
- Active vent system connected to vacuum blower at roof.

Achieving Compliance (cont.)

- ② Gas impermeable membrane typically installed beneath building slab to prevent methane migration into building.
 - Some designs have membrane on top of building slab, covered with a topping slab.
- Monitoring system includes methane sensors mounted on first floor ceiling, adjacent to return air intakes, tops of stairways, and elevator shafts at roof level.
- 2 Sensors wired to control panel with alarm systems and automatic starter to active vent system.
- 2 "Plugs" in utility trenches leading underneath building.

Sierra Point, South San Francisco

Treadwell&Rollo

Venting System Schematic

Venting System Detail

Venting System Collection Pipe Layout

Liquid Boot™ Membrane Application

Perimeter Grade Beam Vents

Wind and Power Turbines at Roof Level

Typical Utility Trench Soil Gas Cut-off at Perimeter of Building

Sub-Slab Monitoring Test Port

Sub-slab Monitoring Test Port

Methane Sensors (Indoor Air)

Methane Sensors

Ceilings of interior spaces (shown prior to TIs)

At top of stairwell (leading to roof)

Audible and Visible Alarms

Control systems panels with backup power supply

Alarms in front lobby

- 20% LEL Building fire protection system company alerted; building management personnel called; warning light in lobby illuminated; blower-assisted venting system activated.
- 25% LEL Building HVAC is switched to "smoke removal function" (OSHA limit for methane = 1.25%).
- 40% LEL Horn alarm activated; Fire Dept. called.

Vapor Intrusion Mitigation System: Summary

- Mitigation system allows facility development on top of a closed landfill that will continue to generate methane for many years (decades).
- Wind-Assist System integral to building construction.
 - Effective in reducing sub-slab vapor concentrations.
 - Low-maintenance with minimal O&M costs.
 - Power-Assist System will operate only if/when needed.
- Sensors and alarms integrated into life safety systems.
- Ability to verify system performance by direct air flow monitoring of sub-slab piping system.
 - Higher air flow reduces sub-slab methane concentrations, thereby reducing risk/probability of indoor air exceedances.

Treadwell&Rollo